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ABSTRACT 

We introduce a concept of real-time computation by a Turing machine. The 
rclativo strengths of one-tape versus two-tape machines is established by a 
now mothod of proofs of impossibility of actual computations. 

In the formulation of computations by Turing Machines it is assumed that the 
problem (say a numerical value of an argument for which a function value is to 
be computed) is given on the machine-tape and the machine proceeds, to perform 
its computation. No a-priori bound is imposed on the number of steps (the "time") 
needed for completion of the computation. The functions computable in this 
way are precisely all recursive functions. 

It is of great interest from the point of view of a general theory of computation 
to gain insight into computation procedures where there is some limitation on 
the time allowed for computation. 

One natural limitation is to require that if the problem (the input data) consists 
of n symbols then the computation will be performed in n basic steps, one step 
per input symbol. We may assume that the input sequence is entering the 
machine one symbol at a time and that the machine performs one of its atomic 
moves per input symbol. We again let our machines be Turing Machines which 
may, however, have more than one tape. Computations which are performed in 
this way will be called real-time computations (by a Turing Machine). Note that 
our systems may serve as mathematical models for computers (with auxiliary 
tapes) which are used for what is called "real-time" control. 

If, in particular, the result of a computation on every input sequence is always 
0 or 1 then we can view the machine is defining a set, namely, the set of those input 
sequences which yield 1. Informally we can also say that the machine recognizes 
for every input sequence whether it is in the set defined by the machine or not. 

There are several results, notably by Yamada [2], about real-time computation 
by a Turing Machine. These are mainly along the~lines that certain computations 
are possible in real time. The concept of real-time computation is generalized 
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in an interesting way by Hartmanis and Stearns in [1]. In contrast with the case of 
finite automata there is no neat intrinsic characterization of the class of sets which 
are real-time definable. In fact, rather than attempt a complete characterization 
we should probably contend ourselves with insight about feasibility and non- 
feasiblity of certain problems in real time. 

Our main result is that there exists a recognition problem which can be done 
in real time using two tapes but cannot be done in real time using a single tape. 
This result has obvious implications concerning the relative strengths of computers 
with one or more tapes when used as real-time control devices. 

In Section 6 we discuss the difficulty inherent in proofs of impossibility of 
certain computations. By way of illustration we give an example of a problem 
which somewhat unexpectedly can be done in real time on a single tape (Theorem 3). 

The result about relative strength of one-tape versus two-tape real-time comput- 
ation is but one example in this dit~cult area of assessment of "degree of difficulty 
of a computation." We hope that some of the ideas in our proof, especially the 
concept of a bottleneck in a computation, may generalize to apply to other prob- 
lems in the same area. 

1. Real-time Turing Machines. The model for real-time computation that we 
employ is the one used by J. Hartmanis and R. Stearns [1] and byYamada [2]. 

A multi-tape Turing Machine over the input alphabet Y. is a finite automaton 
M having a finite set S of states and a working alphabet W= {cq, "",~n}. One of 
the states, call it So, is distinguished as the initial state of M. A subset F ~ S is 
singled out as the set of designated final states. The machine has k two-way 
infinite linear work-tapes t~, ..., tk which are divided into squares. Furthermore, 
there is a reading printing head which at any given time scans one square on each 
of the work-tapes. M is capable of receiving inputs a ~ ~. The working alphabet 
is always assumed to contain a blank symbol and at least one other symbol so 
that 2 < n. 

The operation of the Machine is specified by a function 

M(tr, s,oq,,.. . ,%) = (s',X1, ...,X~, %,,...,ejk) 

where a e Z, s, s' e S, ~i,% ~ W, X~ e {0,1, - 1}. We shall refer to this function as 
the machine-table of the k-tape Turing Machine M. The interpretation is that 
if the input is tr and M is in state s and is reading cctr on the tape tr, 1 < r < k, 
then M will go into state s', print ~j. on the square scanned on tr, and move each 
tape tr one square left, or one square right, or not at all, according as to whether 
X, equals 1, - 1, or 0. This action of M is called an atomic move. 

RE~ARK. When M prints a symbol ~ e W on a square it first of all erases the 
contents of that square. Printing the blank symbol of W simply means erasing 
the contents of the square. 

The set of all finite sequences on the 'alphabet ~ will be denoted by ]~*. 
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DEFINITION 1. A sequence x = o'~ ...o-p ~E* is said to be accepted by M if, 
when started in So and with blank work tapes, M will go under the input sequence x 
through its atomic moves and end in a state in F (i.e., the state of M at the pth 
time unit is designated). 

The set of all sequences accepted by M is called the se ~ defined by M and is 
denoted by T(M). 

A set T _  ~* is called real-time definable (recognizable) if there exists a multi- 
tape Turing Machine M such that T =  T(M). 

In particular Tis called k-tape real-time definable if for some M with k work 
tapes, T =  T(M). 

It is quite clear that the adjective "real- t ime" is appropriate for this mode 
of operation. I f  x is a sequence of length p and requires p time units to feed 
into M then by time p we know, by looking at the state of M, whether x is ac- 
cepted. Thus, there is no time delay between receipt of data and its processing. 

We restrict our attention to recognition problems. A simple analysis, however, 
will show that real-time computation problems can be easily reduced to re- 
cognition problems. Thus, our restriction involves no loss of generality. 

2. The set T 2 .  Let E =  {a,b,O,l,oe, fl}. Words on {a,b} will be called ab 
words and the set of ab words will be denoted by A. Words on {0,1} will be 
called 01 words and the set of 01 words will be denoted by Z. 

If  x = tYttr 2 " ' "  tYn_tff n then, by definition, x* = a,  tr._ x ... a2al. 

DEFINITION 2. 

T2={uwu*Iu~A, veZ} u { u v l ~ v * [ u e A , v e Z }  . 

LEMMA 1. The set T2 is real-time definable by a two-tape machine. 

Proof. We shall describe the mode of  operation of a two-tape machine M 
for which T2 = T(M). The reader can verify that  this mode of operation can 
indeed be realized by a suitable machine-table. 

As the ab word u is coming in, M will print it on its first tape. When the 01 
word v comes in, M will print it on its second tape. According as to whether 
the input following uv is a or fl, M will start tracing back its first or 
second tape. M will end in a designated state if and only if the sequence w of 
inputs following a (or/3) coincides with the sequence being traced backwards 
on the first (second) tape. 

THEOREM 1. The set T z is not real-time definable by a one-tape machine. 
Consequently two-tape real-time computation can do more than one-tape real- 
time computation. 
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3. Preliminary lemmas.. To prove that T2 is not real-time definable by a 
one-tape machine assume by way of contradiction that the one-tape machine M 
does define T2 in real time. Let the number of states of M be m and the number 
of letters in its working alphabet be n. Throughout the following Sections 3-5 
M will always designate this fixed one-tape machine for which T 2 = T(M) .  

DEFINITION 3. If M has input w then the work space t(w) of M on w is the 
sequence of tape squares covered by the motion of M while having the input 
sequence w. 

If x is a sequence of squares on the tape or a sequence of symbols then l(x) 
will denote the length, i.e. the number of elements, of x. 

Let x be an input sequence, by the coding of  x we shall refer to the sequence 
of symbols in the squares of the work space fix), the state of M, and its position 
on the tape, at the end of the input x. 

LEM~tA 2. There exists a numerical  constant c > 0 such that f o r  every 
u ~ A and every integer i > 0 there exists a v ~ Z such that  l(v) = i and ci < l(t(uv)). 

Proof. There are 2 ~ sequences v e Z  such that l ( v )= i. Since the input uv 

may be followed by fl, if vl ~ v, then uvl and uv must be coded differently. Other- 
wise, uvflv* and uvtflv* will both be accepted by M. 

Let l(t(uv)) < k for all v ~ Z ,  l(v) = i. Then there are at most n k. k" m different 
codings of the inputs uv. Hence 2~< n k . k . m .  If i is large this forces k to be 
large so that we may assume that km <= n k (we assume 2 < n). Thus 2 t <  n 2k 

and hence 

1 ln2 i < k .  
2 Inn  = 

Thus we may take cl = ½(In 2) ~(In n). This cl will do for all i larger than some i0; 
for a suitable smaller c the lemma will hold for all i. 

LEMMA 3. There exists an integer d > 0 (depending only on M)  such that  
for  every u e A and every integer i > flu) there exist a sequence v ~ Z ,  l(v) = i, 
such that  a) ci < l(t(uv)), b) no more than ~th of  the squares of  t(uv) are covered 

by M more than d times. 

Proof. Let us choose a sequence v ~ Z ,  l(v) = i, for which a) holds. Let dl 
be a number such that more than ~th of the squares of t(uv) are covered by M 
more than dl times. Then the total number of moves of M exceeds 
d~ l ( t ( uv ) )  > ~dlci.  But since M operates in real time the number of moves 
of M by the input uv is exactly l(u) + l(v) < 2i. Thus, ~dlci  < 2i and dl < lO/c. 

The number d = [(10/c) + 1] satisfies b). 

4. Bottleneck squares. The proof of our main theorem rests on the idea that in 
working on certain input sequences the machine M develops bottleneck squares 
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on its work-tape through which information cannot flow in sutficient quantity. 
The idea o f  a bottleneck is made precise in the following: 

DEFINITION 3. Let u e A, v e Z .  A square B on t(uv) is called a bottleneck square 
of  t(uv) if 1) under input uv the machine passes through B no more than d times 
(where d is as in previous Lemma 3), 2) B lies outside the work space t(u), 3) 
the length of the section of  t(uv) determined by B which does not  contain t(u) 
exceeds l(u) + 1. 

I t(uv) I 

B / 

l(u) + 1 < l(tt) 
Figure I 

tl I 

[,EMMA 4. For every u e A  there exists a v E Z such that the tape t(uv) has 
a bottleneck square. 

Proof. Let i be an integer such that 5 l (u )+  5 < ci and also l(u)< i. By 
Lemma 3 there exists a sequence v ~ Z such that ci < l(t(uv)) and fewer than 
-~th of  the squares of  t(uv) are covered more than d times. Now l(t(u)) < l(u) + 1 
< (ci/5)< l(t(uv))]5. Dividing t(uv)into 5 equal parts (there is a trivial modi- 

fication of  the argument if l(t(uv)) is not divisible by 5) we see that either on 
the left or on the right end of  t(uv) there is an interval of  length } l(t(uv)) which 
does not  contain any squares of  t(u). In this interval consider the }th oft(uv) 
which does not run to the end. Since fewer than }th squares of t(uv) are covered 
more than d times by M, there is a square B in this }th of  t(uv) which is covered 
at most d times. 

There are at least l(t(uv))/5 >(ci/5)> l(u)+ 1 squares between B and the end 
of  t(uv). Thus B is a bottleneck square. 

5. Proof  of main theorem. Let u e A and v e Z be such that t(uv) has a bottle- 
neck square B. To fix ideas let us assume that B is to the right of  t(u). As the input 
uv is coming in, there is a first time that M enters the right-most square E of  

t(uv) (see Figure 1). Let w e Z  be the initial section of  v such that uw is the 
sequence leading to the first visit of  M at E. Thus t(uv) and t(uw) have the same 

right-hand end square E and B is also a bottleneck square of t(uw). 
Denote the square immediately to the right of  B by R. By a passage of  M 

through B we mean either a move of M from B to R or a move from R to B. 
The state of  M during a passage is the state M has when it reaches R in the first 
case, and the state M has when it reaches B in the second case. 
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Note that passages of M through B do not include atomic moves of M in 
which it starts on B and stays on B. 

Under the input uw the machine M will first cover the tape t(u) and then, 
under the w portion of the input, move to the square E. Let pl ,P2, . . - ,p, ,  be the 
consecutive passages through B (r = 1 is not excluded). The passage Pl is a 
move from B to R, P2 is a move from R to B, etc. Let the state of M during the  
passage p~ be si, 1 < i < r. The scheme of the bottleneck square B is the r + 1 
tuple (e, sl, ...,s,) where e is 1 if B is to the right of flu) and e is - 1  if B is to 
the left of  t(u), and sl, ..., s, are as above.The notions of passage and state during 
a passage are modified in an obvious way when B is to the left of t(u). 

Now the number r of passages through B is at most d. Thus, there are at 
most N 

N = 2 . m + 2 . m Z + . . .  + 2 . m  a 

different schemes of bottleneck squares, where m is the number of states of M. 
Let g be a number such that N < 2 g. For each u ~A,  l(u)= g, let v ~ Z  be a 

01 sequence such that t(uv) has a bottleneck square Bu and let w denote the 
section of v leading to the first visit of M to the end Eu of t(uv). There must 
be two different sequences ul, u2 ~ A, l(Ul) = l(u2) = g, such that the bottleneck 
squares B~I and B,, 2 have the same scheme, say (1,st, . . . ,sr).  Note that e = 1 
which means that B~, is to the right of t(u~),i = 1,2. 

Let 

UlW1 = U 1 8 1 " ' S n 1 " " ~ ' n 2 " ' S n , . ' " S n . + l  

U2W2 = U 2 t l  "'" t m l " ' "  tm2 "'" tmr  "'" t i t +  1 

where e , t  ~ {0,1}, enl is the input when M visits B~I during the first passage, 
e,, is the input when M visits Bul during the second passage, and so on up to 
end; similarly for tin:tin2,'", in the second sequence u2w2. After receiving the 
input en,+~ (tim,+,) M visits for the first time the right-hand end-square E~I(Eu2). 

We come now to the main point of our argument, In the sequence UlWl re- 
place, for each odd 1 < i < r - 2 ,  the segment en~+~ . . .e ,~+:~ by the sequence 

tree + 1" ' "  trot + 1 - 1" Furthermore, replace en, + 1"'" e,,, +, by tin, + 1"'" t,~, + r Call the 
resulting sequence u~w~. Note that all the changes were made in the Wl portion 
of  u~wl. Now, ulwl and u2wz have the same scheme of states in the passages of 
M through B~, and B~2, respectively, and our changes in ulwl were made only 
in the inputs between visits to Bu:while M was on the right of B~,, or after the 
last visit to B~I. One can see by finite induction over 1 < i < r + 1 that UlW'~ 
again has the same scheme (1, sl, Sz,".,  s,) and that at each input e,~, j odd and 
2 <-j < r + 1, the portion of the tape right of Bu, is identical with the portion 
of the tape t(u:w2) right of Bu~ at input tin, and the states of M at the corres- 

ponding inputs are the same. 
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The work spaces t(ulw'l) and t(u2W2) have squares B~I and B~2, respectively, 
with the following properties. The work space flu,) is completely to the left of 
B,,, i = 1, 2. The portions of t(ulw'~) and t(u2wz) beyond/3,, and B~2 are strictly 
longer than I(u~) = I(u2) = g. By the previous paragraph, at the end of the inputs 
ulw'~ and u2wz M is at the end-squares E~ and E2 of the respective work spaces 
and the portions of tape from B,,I to E 1 and from B~z to E 2 as well as the states 
of M at E~ and E2 are identical. Assume now that both u~w'~ and uzw2 are fol- 
lowed by the input au*. We have, since u l '~  uz, 

p $ ulwl.u  r2, u2wz.u  ¢ r2. 

But l(au*) = g + 1 is less than the distance from E~ to Bu,, i = 1,2. Since M 
operates in real time and makes one move per input, it will stay, throughout 
the input portion ~u*, to the right of B,,. Thus, M will start in both cases in 
the same state and will move through identicaly printed portions of tape. It 
will therefore be in the same state at the ends of ulw;~u* and uzw2~ul and 
hence cannot accept one and reject the other; a contradiction. 

An analysis of the previous proof shows that we can derive from it explicit 
information as to the point where any given one-tape machine will fail to decide 
correctly whether a sequence x is in Tz. We state the result without detailed 
proof since the proof is already contained in our previous work. 

THEOREM 2. Let M have m states and n letters in its working alphabet. 
Let c = ½(In2)/(lnn), d = [(10/0 + 1], and N = 2m + 2m 2 + ... + 2m d. Let g 

be the smallest integer such that N < 2~ and let i be the smallest number such 

that 5 g < c i  and i m <  n ~. Then there exists a sequence x~E* such that 
l(x) <=2g + i + l and M accepts x even though xq~ Tz or M rejects x even 
though x ~ T2. 

6. General remarks on proofs of impossibility. We would like to compare 
briefly the result in Theorem 1 and its proof with other results concerning 
impossibility of computations by various mathematical machines. 

The proofs of impossibility in the literature fall into two classes. In some 
situations where we want to show about two classes A and B of mathematical 
machines or computational procedures that there is a function computable 
by a procedure in B, but not computable by any of the procedures in A, we can 
use the diagonal method. The class B is rich enough to contain a single procedure 
which in some sense is universal with respect to A and this procedure is utilized 
to diagonalize over all procedures in A. The proof that there exists a general 
recursive function which is not primitive recursive is a case in point.The class of 
general recursive functions contains a function which enumerates all primitive 
recursive functions and this function is used in a diagonalization argument. 
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The second method, applicable mainly when considering mathematical 
machines, consists in showing that the machines in the class A cannot 
store enough information to perform a certain task. Consider, for example, the 
set T = {0"10"[n = 1,2,...} where 0" stands for a sequence of n symbols 0. To 
show that T is not definable by any finite automation M, we observe that as soon 
as n exceeds the number m of states of M, the automaton cannot remember 
how many O's were in the sequence 0" and consequently cannot always decide 
whether in 0nl0 k the equality k = n holds. 

Theorem 1 does not lend itself to either of the above methods. Two-tape real- 
time Turing Machines are not strong enough to diagonalize over the set of all 
one-tape real-time Turing Machines. The information storing capacity of a single 
tape, however, is equal to that of two tapes. Thus, neither method applies. As a 
rule, the proofs of non-feasibility of certain computations where the class of 
algorithms falls in this in-between range, not strong enough to use diagonalization 
but not weak enough to allow a straightforward information capacity argument, 
are rather hard. We have to resort to a fine analysis of the computational pro- 
cedures available and it is difficult to survey all the possibilities. 

Thus, there is a need for new techniques for handling this kind of problem. It 
should be remarked that many of the most interesting questions about non- 
feasibility of computations fall in this in-between area. 

7. A set which is one-tape recognizable. When we look at the set Z 2 we do 
have a strong intuitive'feeling that T2 is not real-time recognizable by a one-tape 
machine. For if we consider the way in which the input uv, u c A ,  v ~ Z ,  was 
coded by the two-tape machine (Proof of Lemma 1), we see that on one tape Mwe 
will have to code u as it comes in, and then v as it comes in. By the time M finishes 
coding v it is far from flu), if now 0~u* comes in, then M is not able to compare 
it with u. These observations, however, are far from a proof because they apply 
only to the straightforward way of coding uv, and in a proof of impossility we 
must take into account all conceivable codings. 

The following is an example of a set T1 which is very similar to the set T2 and to 
which the above suggestion of proof of impossibility equally applies. It turns out 
that by use of a more complicated coding, 711 is recognizable by a one-tape 

machine. Let ~ =  {a,0,cqfl} and let 

T1 = {a"O"o~a"[n, m = 1, 2.--} U {a"0m30m [ n, m = 1,2,.-.}. 

Note that T~ has the same structure as T2 except that we do not use b and 1. 

THEOREM 3. The set 7"1 is recognizable in real time by a one-tape machine. 

Proof. We shall outline the operation of the machine M without giving all 

details of its structure. 
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As the sequence a" is coming in M prints a string x of a's. However, the machine 
will print an a and move to the right only for every second input a. Thus, at the 
end of a" the work tape contains a sequence x of n/2 a's  and M is at the right end 
of x. 

As soon as the first 0 input comes in, M prints a 0 at the right end ofx .  During 
the 0 R input M will move the whole sequence x leftwards from the square con- 
taining 0. This will be done by erasing an a on the right, moving all the way to the 
left end of x and printing an a, moving back all the way to the right end of x, etc. 
All this is done at the rate of one atomic move per input 0. 

We now distinguish two cases. If  an input ct comes in and is followed by a k, 
then M has to check whether the sequence x (which by now has been moved from 
the original place) has length k/2 (or perhaps (k /2 ) -  1 in case M is in the stage of 
moving inside x from right to left), for this would check whether n = k and hence 
whether a"O~cta k ~ T1. Let the square where M is inside x be E. When a comes in, 
M will mark E, move one square to the right for each a input till it comes to the 
right end of x. It will then move clear to the left end of  x and then back to E. We 
have n = k if and only if by the time M had k inputs 0 it is back at E. 

I f  an input fl comes in and is followed by O k, then M has to check whether k 
equals the number m of previous 0 inputs. This is done by moving the x sequence 
to the right, back to the 0 symbol on the tape. The moving to the right is done 
by reversal of the procedure used before for moving to the left. x will return to the 
original position under k inputs 0 if and only if k = m; i.e., if and only if 
a"0 ~'/~0 k~ T1 " 

In all other cases, where the whole input sequence does not have the form 
a"O%a k or anOm/~o k, it is easy to arrange for M to reject the sequence. Thus, M 
accepts precisely the input sequences in Tt.  
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